
SIGPLAN
ACM

Garbage In/Garbage Out

You Could Learn a Lot from a Quadratic:
I. Overloading Considered Harmful

Author: Henry G. Baker, http://home.pipeline.com/˜hbaker1/home.html; hbaker1@pipeline.com

(No sacred cows were physically harmed in the making of
this column.)

Probably the single most memorable non-trivial al-
gebraic formula that students ever see is the famous
quadratic formulafor finding the roots of the quadratic
equationAx2 + Bx + C = 0:

x =
−B ±

√
B2 − 4AC

2A
.

Thus, when students are given the problem of writing
code for solving this equation in an elementary program-
ming course, they dredge up this formula, and proceed to
try to use it to solve for the roots of a quadratic in the “ob-
vious” way. If the teacher is exceptional, he will provide
enough test cases to show that computer arithmetic is not
at all like algebraic arithmetic, and the students will learn
something valuable when this formula fails in mysterious
ways. Unfortunately, most computer scientists don’t take
this opportunity to provide valuable insights into a wide
variety of mathematical and programming issues. Indeed,
the Ada Language Reference Manual[Ada83] gives a
very poor implemention of quadratic equation solving as
anexampleto be emulated!

-- From [Ada83LRM], 10.1.1, Ex. 1.
with TEXT_IO, REAL_OPERATIONS;
use REAL_OPERATIONS;
procedure QUADRATIC_EQUATION is

A, B, C, D : REAL;
use REAL_IO, TEXT_IO, REAL_FUNCTIONS;

begin
GET(A); GET(B); GET(C);
D := B ** 2 - 4.0 * A* C;
if D < 0.0 then

PUT("Imaginary Roots.");
else

PUT("Real Roots : X1 = ");
PUT((-B - SQRT(D))/(2.0 * A));
PUT(" X2 = ");
PUT((-B + SQRT(D))/(2.0 * A));

end if;
NEW_LINE;

end QUADRATIC_EQUATION;

Most of the careful work of the Ada language design-
ers on high quality numeric datatypes has gone down the
drain with these few lines of careless code. Suppose that
the REALvariables in this program are implemented as
ubiquitous IEEE-754 binary floating point numbers hav-
ing a 24-bit mantissa and an 8-bit exponent. How can this
program fail? IfA = 0, then we can get a divide-by-zero
exception (or an ‘infinity’). IfA = 1, B = 214 = 16384,
C = −1, thenB2 − 4AC = 228 + 4 ≈ 228 = D, so
SQRT(D) = 214 and-B+SQRT(D) = −214 + 214 = 0,
even though the true roots are approximately−214 =
−16384 and2−14 ≈ .000061! For another example, if
A = −C = 280 (about the size of Avagadro’s Number)
andB = 0, thenB2 − 4AC= 2162, whichcannotbe rep-
resented within the 8-bit exponent range even though the
roots±1 canbe represented.

Thus, if -B and SQRT(D) are of approximately the
same magnitude, then we can get massive cancellation,
and perhaps produce a root which iszero even when
C 6= 0, which is impossible, sinceC/A is the product
of the roots!1 If B is particularly large or small, then the
mere computation ofB2 may cause an exponent under-
flow or overflow, even when both roots are well within
exponent range. Aside from these problems, the program
is quite inefficient, since it recomputesSQRT(D) and
2.0 * A twice.2 Given the class of real-time systems that
Ada is targeting, it is possible that the end-users may die
of more than embarrassment if this example is followed.

Examples like this prove the utter futility of trying to

1[Casio86] suggests making the same mistake, thus vastly reduc-
ing one’s confidence in Casio products. [Menzel60,1.1], [Kahan96],
and [Press86] avoid cancellation, and [Young72] provides an exhaustive
analysis of cases of the quadratic. Although [Press86] doesn’t handle
overflow/underflow gracefully, his cookbook is at least elegant:

Q = −(1/2)[B + sgn(B)
√

B2 − 4AC]

x1 = Q/A

x2 = C/Q.

2Yes, I know that many compilers can docommon subexpression
elimination, but this ability for subroutines likeSQRTis rare, and what
good is an optimization that can’t be relied upon?

30

SIGPLAN
ACM

Garbage In/Garbage Out

make programs look more like mathematical formulæ—
which hubris is the core premise of FORTRAN (‘FOR-
mula TRANslator’) and its descendant wannabees. Com-
puter arithmetic doesn’t follow most of the rules required
by algebra, so trying to make program expressions look
like mathematical expressions is foolhardy and danger-
ous. Such confusion is especially dangerous to the poor
students, who don’t yet have enough of a solid grasp of
either mathematics or programming to be able to navigate
these subtle minefields.

Mathematics of Quadratic Equations

For the past 35 years, American high schools have been
engaged in a massive Federally-funded study to deter-
mine how little mathematics and science can be taught to
the populace before a first-world country collapses into
a third world economy. Freshmen now arrive at college
blissfully ignorant of much of basic algebra, including
the algebra necessary to understand and solve a quadratic
equation. In particular, most cannot derive the quadratic
formula, or even describe the simple symmetries of a
quadratic equation.

The usual derivation of the quadratic formula involves
“completing the square,” but since this step is completely
unmotivated, it is (quite properly) dismissed by the stu-
dent as a mere “trick” and quickly forgotten. A more fun-
damental approach involves looking at the symmetries of
the equationAx2 +Bx+C = 0 with real coefficientsA,
B, C, whereA 6= 0.

The first symmetry of this equation is the observation
that the solution does not change when the equation is
“multiplied through” by any non-zero constant, including
1/A itself (assuming thatA 6= 0). Thus, we can force
the coefficient of the quadratic term to be non-negative
by multiplying the equation by sgn(A):3

0 = sgn(A)Ax2 + sgn(A)Bx + sgn(A)C

= |A|x2 + sgn(A)Bx + sgn(A)C

More importantly, we cansimplify the equation byelim-
inating a parameterif we divide a non-trivial quadratic
equation through by the coefficient of the squared, or
“quadratic” term. This produces the “monic” equation:

x2 + (B/A)x + (C/A) = 0.

3We use the convention that sgn(A) = 1 if A > 0 and sgn(A) =
−1 if A < 0. When A = 0, we require only that sgn(A)2 =
|sgn(A)| = 1, so that1/sgn(A) is non-singular andA = sgn(A)|A|.

Assuming thatA 6= 0, we can then assume “without loss
of generality” that we have already performed this step,
which reduces 3 parameters to 2, for a savings of33%.
This allows us to focus our attention on the simpler equa-
tion:

x2 + Bx + C = 0.

We now consider the effect on the structure of the equa-
tion of performing the substitutionx = −y. We get:

(−y)2 + B(−y) + C = y2 − By + C = 0.

In other words, negatingx negatesthe linear term while
preservingthe signs of the quadratic and constant terms.
If we wanted to, we could use this symmetry to force the
coefficient of the linear term to be negative with the sub-
stitutionx = −sgn(B)y:

0 = (−sgn(B)y)2 + B(−sgn(B)y) + C

= y2 − (sgn(B)B)y + C

= y2 − |B|y + C

We can generalize this symmetry by considering thedila-
tion x = ay, wherea is a non-zero real number:

(ay)2 + B(ay) + C = (a2)y2 + (aB)y + C = 0.

The dilationx =
√

|C|y can be used to normalizeC 6= 0
such that the constant term has absolute value 1:

0 = (
√

|C|y)2 + B(
√

|C|y) + C

= |C|y2 + (B
√

|C|)y + C.

Dividing by |C| produces:

0 = y2 + (B/
√

|C|)y + sgn(C)

= y2 + (B/
√

|C|)y ± 1.

Dilations also give us another way to get rid of the coeffi-
cientA > 0 in the equationAx2 + Bx + C = 0: use the
substitutionx = y/

√
A:

A(y/
√

A)2 +B(y/
√

A)+C = y2+(B/
√

A)y+C = 0.

Finally, we can perform all three simplifications at the
same time with the substitutionx = −y sgn(B)

√

|C|/A:

0 = A

(

−y sgn(B)

√

|C|
A

)2

+ B

(

−y sgn(B)

√

|C|
A

)

+ C

= |C|y2 −
(

|B|
√

|C|/A
)

y + C

31

SIGPLAN
ACM

Garbage In/Garbage Out

Now, dividing by|C|, we get

0 = y2 −
(

|B|
√

A|C|

)

y + sgn(C)

= y2 −
(

|B|
√

A|C|

)

y ± 1.

With this substitution, we have achieved a67% reduction
in parameters, from 3 to 1.

If C 6= 0, then we can consider the substitutionx =
1/y:

A(1/y)2 + B(1/y) + C = A/y2 + B/y + C = 0.

Now if C 6= 0, then any rooty 6= 0, so we can multiply
through byy2 to get:

y2(A/y2 + B/y + C) = Cy2 + By + A = 0.

The substitutionx = 1/y reverses the quadratic end-for-
end and exchanges the roles ofA andC!

The final symmetry we consider is that oftranslation,
in which we perform the substitutionx = y + b:

0 = A(y + b)2 + B(y + b) + C

= Ay2 + 2Aby + Ab2 + By + Bb + C

= Ay2 + (2Ab + B)y + (Ab2 + Bb + C).

This last symmetry provides for the possibility of arrang-
ing for the linear coefficient ofy to be zero if2Ab+ B =
0, i.e.,b = −B/2A:

0 = Ay2 + (2Ab + B)y + (Ab2 + Bb + C)

= Ay2 +

(

B2

4A
− B2

2A
+ C

)

= Ay2 +

(

C − B2

4A

)

.

In other words,y2 = B2/4A2 − C/A, in which case

y = ±
√

B2

4A2
− C

A

= ±
√

B2 − 4AC

4A2

= ±
√

B2 − 4AC

2A

Substituting now forx, we now get

x = y + b

= y − B

2A

= ±
√

B2 − 4AC

2A
− B

2A

=
−B ±

√
B2 − 4AC

2A
.

In other words, by studying the symmetries of the equa-
tionAx2+Bx+C = 0, we were able to find the quadratic
formula by ourselves.

We now turn the problem around, and study the
quadratic equation that results from the two rootsx1 and
x2:

(x − x1)(x − x2) = x2 − (x1 + x2)x + x1x2 = 0.

In other words, if we have amonic (A = 1) quadratic
equationx2 + Bx + C = 0, then thesumof the roots is
−B, and theproductof the roots isC. In particular, if
C = 0, then (at least) one of the roots is zero, while if
B = 0, thenx1 + x2 = 0, i.e.,x2 = −x1.

Furthermore, ifC 6= 0 and if we have already found
one rootx1 = r (which must therefore be non-zero), then
we can trivially find the second root:x2 = C/r = C/x1.
In particular, if|C| = 1, thenx2 = ±1/x1 = ±1/r, and
the equation has the following simple form:

(x − r)(x ± 1/r) = x2 − (r ± 1/r)x ± 1 = 0.

Let us revisit the quadratic formula forx2 +Bx+C =
0 once more, now that we know that−B = x1 + x2 and
C = x1x2 (x1, x2 both real):

x =
−B ±

√
B2 − 4C

2

=
(x1 + x2) ±

√

(−(x1 + x2))2 − 4(x1x2)

2

=
(x1 + x2) ±

√

(x1 + x2)2 − 4x1x2

2

=
(x1 + x2) ±

√

x2
1 + 2x1x2 + x2

2 − 4x1x2

2

=
(x1 + x2) ±

√

x2
1 − 2x1x2 + x2

2

2

=
(x1 + x2) ±

√

(x1 − x2)2

2

=
(x1 + x2) ± |x1 − x2|

2

=
x1 + x2

2
± |x1 − x2|

2
.

32

SIGPLAN
ACM

Garbage In/Garbage Out

In other words, the first term of the quadratic formula
provides theaverage/mean(center of mass) of the two
roots, while the second term of the quadratic formula pro-
vides half the (absolute value of the)differenceof the two
roots!4

Trigonometric Solutions

In the previous section, we saw that the quadratic equa-
tion y2 −By± 1 = 0 for B ≥ 0 is a particularly interest-
ing ‘universal’ quadratic, because the general quadratic
can be reduced to this form without performing addi-
tion/subtraction, which can sometimes cause spectacular
cancellation errors. We now investigate ‘trigonometric’
solutions to this equation.

We first take up the case whereC = +1, i.e., y2 −
By + 1 = 0, for B ≥ 0. There are two subcases:B ≥ 2,
and0 ≤ B < 2. Consider the quadratic formed by the
two (positive) rootsy1 = eθ, y2 = e−θ:

0 = (y − y1)(y − y2)

= (y − eθ)(y − e−θ)

= y2 − (eθ + e−θ)y + eθe−θ

= y2 − 2 cosh(θ)y + 1

= y2 − By + 1.

This last equation is well-defined ifB ≥ 2, since
cosh(θ) ≥ 1, for all real θ, so we can solve forθ to pro-
duce the rootsy1, y2:

θ = acosh(B/2)

y1 = eθ = eacosh(B/2)

y2 = e−θ = e−acosh(B/2).

When0 ≤ B < 2 in the equationy2 − By + 1 = 0,
then we have 2complexroots becauseB2 − 4AC =
B2−4 < 0. We can then utilize hyperbolic trigonometric

4A classic ‘hack’ for the max and min functions involves the iden-
tities max(x1, x2) + min(x1, x2) = x1 + x2 andmax(x1, x2) −
min(x1, x2) = |x1 − x2|, which yield the formulæ:

max(x1, x2) =
x1 + x2

2
+

|x1 − x2|

2

and

min(x1, x2) =
x1 + x2

2
−

|x1 − x2|

2
.

We have thus shown that these formulæ have thesamecancellation
problems as the quadratic formula, and are thus aterrible way to com-
pute max and min!

functions with complex angles, or alternatively, we can
identify B/2 with cos(φ), for some real angleφ:

0 = (y − y1)(y − y2)

= (y − eiφ)(y − e−iφ)

= y2 − (eiφ + e−iφ)y + eiφe−iφ

= y2 − 2 cos(φ)y + 1

= y2 − 2 sin(π/2 − φ)y + 1

= y2 − 2 sin(α)y + 1

= y2 − By + 1.

We then solve forα, y1, y2:5

α = asin(B/2)

y1 = eiφ = ei(π/2−α) = ie−iα = cis(−α)i = cis(−asin(B/2))i

y2 = e−iφ = e−i(π/2−α) = −ieiα = −cis(α)i = −cis(asin(B/2))i.

(cis(φ) = cos(φ) + i sin(φ) = eiφ.)

The other major case involvesC = −1, i.e.,y2−By−
1 = 0, for B ≥ 0. Consider the rootsy1 = eθ, y2 =
−e−θ:

0 = (y − y1)(y − y2)

= (y − eθ)(y + e−θ)

= y2 − (eθ − e−θ)y − eθe−θ

= y2 − 2 sinh(θ)y − 1

= y2 − By − 1.

Thus, we can now solve forθ, y1, y2:

θ = asinh(B/2)

y1 = eθ = easinh(B/2)

y2 = −e−θ = −e−asinh(B/2).

For completeness, we express a rootx1 of the original
quadraticAx2 + Bx + C = 0 trigonometrically:

x1 =

√

−C

A
e−asinh

√

B2

−4AC .

“Suitably interpreted,” this formula is equivalent to the
classical quadratic formula! (Hint: use the mathematical
definition: asinh(z) = log

(

z +
√

1 + z2
)

and the prop-
erty asinh(−z) = −asinh(z).)

An important reason for expressing the solutions of the
quadratic equation in this trigonometric form is that all

5We utilize the function asin(B/2) rather than acos(B/2) because
the inverse sin function is better behaved nearB/2 = 0.

33

SIGPLAN
ACM

Garbage In/Garbage Out

of the operations leading up to this form are numerically
stable,6 thus ‘passing the buck’ to the trigonometric7 and
exponential functions to properly handle the numerical
subtleties, instead of trying to handle them one’s self!

Floating Point Arithmetic

Computers have (at least) 2 kinds of arithmetic opera-
tions: “integer” (“fixed point”) operations and “floating
point” operations. Fixed point addition and multiplica-
tion are commutative and associative over a limited range
in traditional algebraic fashion, whereas floating point ad-
dition and multiplication are usually commutative, but al-
most never associative.

Most algebraic systems encountered by students are
commutative and associative, withmatricesproviding the
first encounters with non-commutative algebra. Other
than floating point arithmetic, the only non-associative
algebra normally encountered is that of vector “cross-
products,” which are neither commutative nor associa-
tive. Unfortunately, computer science classes rarely use
the student’s encounters with floating point arithmetic to
point out its non-associativity and other “weird” features.

In floating point arithmetic, there exist numbersy 6= 0,
such thatx ⊕ y = x,8 i.e., y ‘drowns’ in x (why do
you think they call it ‘floating point’?). For example, on
many computers108 ⊕ 1 = 108. As a result, one can
write loops which continually incrementx with y, but
will never reachz > x! The student usually gets this
rude awakening the first time he tries to perform approx-
imate integration by adding up the little rectangles as his
calculus class suggests.

In many implementations, there exist numbersx 6= 0
such thatx ⊘ 2 = 0. In other words,x is so small that
dividing it by 2 can make it identically zero (or crash

6WhenB ≈ 2, we compute eithercosh(θ) ≈ 1 or cos(φ) ≈ 1,
which implies thatθ ≈ 0 or φ ≈ 0, respectively. The loss of accuracy
nearB/2 ≈ 1 is unavoidable due to the approximation of a double root.

7If you want to try these trigonometric solutions, you may need
to implement the inverse hyperbolic functions acosh(x), asinh(x)
yourself—either because they weren’t included in your language, or be-
cause they are broken (inverse hyperbolic functions are rarely tested).
In such cases, the mathematical definitions are [Steele90]:

asinh(z) = log

(

z +
√

1 + z2

)

acosh(z) = 2 log

(

√

(z + 1)/2 +
√

(z − 1)/2

)

.

8We follow [Knuth81] in using⊕,⊖,⊗,⊘ for the floating point
operations of+,−,×, /.

the program). This situation is called numericalunder-
flow. There also exist numbersx 6= 0 such that comput-
ing x ⊗ 2 causes either the program to crash with a nu-
mericaloverflow, or to produce a ‘number’ that prints as
NaN(‘Not-a-Number’) or ‘infinity’. However, forbinary
floating point implementations, division and multiplica-
tion by powers of 2 lose no accuracy in the absence of
overflow/underflow,9 so we can writex ⊗ 2k andx ⊘ 2k

asx2k andx/2k = x2−k, respectively.

Although floating point multiplication and division
are not associative, even in the absence of over-
flow/underflow, they are relatively stable operations in
the sense that the floating point result is not too far from
the mathematical value (which is not itself usually repre-
sentable). Square root is even more stable, as it cannot
produce overflow/underflow, and fails only for negative
arguments.

Probably the most common (and most severe) problem
with floating point arithmetic occurs when very precise
numbers of the opposite sign and nearly the same value
are algebraically summed. In this case, the resulting value
may be very far from the correct numerical value, and
may be almost totally garbage. Thus, whilex ⊖ x = 0,
(y ⊕ x) ⊖ x may be very far fromy, and may even be
identically zero, ify first drowns inx.

Let us consider the two rootsx1 > 0, x2 > 0 of the
quadratic equationx2− (x1 +x2)x+x1x2 = x2 +Bx+
C = 0. If x2 is many orders of magnitude smaller than
x1, thenB = −(x1 ⊕ x2) = −x1, when evaluated in
floating point. Thus, if we look at the operation of the
quadratic formula when computed using floating point:

x2 =
x1 ⊕ x2

2
⊖ x1 ⊖ x2

2
=

x1

2
⊖ x1

2
= 0,

even whenC = x1x2 6= 0!

Thus, when implemented with floating point arith-
metic, the naive quadratic formula may get one of the
roots correct, but completely flub the other one. The
naive formula may still produce very poor results even
when both of the answers produced from the floating
point arithmetic are non-zero.

Exponent Range Analysis

Consider again the quadratic equation (with real roots)
x2 − Bx ± 1 = 0, whereB ≥ 0. We note that since
|x1| = 1/|x2|, if |x1| = 2k, then|x2| = 2−k, so the two

9Except for ‘denormalized’ numbers, which should have been called
‘subnormal’ numbers.

34

SIGPLAN
ACM

Garbage In/Garbage Out

roots have exponents that aresymmetrically distributed
about20 = 1. Since floating point exponent range limits
are usually more-or-less symmetric about20 = 1, we can
usually be assured (for this equation) that ifx1 is within
exponent range, then so willx2.

Now B = x1 +x2 ≥ 0, so the root of larger magnitude
must be non-negative (regardless of the sign ofx2). Call
this larger rootx1 = r > 0. If the magnitude ofB is very
large, sayB = 2k, for k ≫ 1, thenB will equalx1 = r,
because|x2| = 1/r will drown in x1. So, in this case, we
get the equation

x2 − (x1 ⊕ x2)x + (x1 ⊗ x2) = x2 − (x1)x ± 1 = 0.

In short, if the coefficientB ≥ 0 in the quadraticx2 −
Bx ± 1 = 0 with real rootsx1, x2 is in exponent range,
thenx1 andx2 must both also be in exponent range.10

So the quadratic equationx2 − Bx + C = 0, B ≥ 0,
C = ±1, is particularly nice, because its real solutions
are always representable. We now solve this equation. If
B ≥ 2, thenB2−4C ≥ 22−4C = 4(1−C) ≥ 0, so the
roots are always real. The larger magnitude root (which
must be positive) can be computed as

B′ = B ⊘ 2 (so B′ ≥ 1)

x1 = B′ +
√

B′2 + C

≈ B′ ⊗
(

1 ⊕
√

1 ⊕ (C ⊘ B′2)
)

x2 = C ⊘ x1.

The only possible problem occurs in the step where we
computeC ⊘ B′2. If B′ is very large, sayB′ = 2k

for k ≫ 1, then|C ⊘ B′2| = 2−2k, which can produce
exponent underflow. However, in this case, the under-
flow isn’t serious, because when it happens, we merely
produce an extremely small (in absolute value) number
which drowns when added to 1. This underflow should
therefore be ignored, because we will already be getting
the best answer possible.

If 0 ≤ B < 2, on the other hand, then we have two
cases:C = 1 andC = −1. If C = 1, thenB2 − 4AC <
22 − 4 = 0, so both roots are complex. IfC = −1, then
B2 − 4AC = B2 + 4 > 0, so both roots are real. The
larger magnitude root is also positive, so

B′ = B ⊘ 2 (0 ≤ B′ < 1)

x1 = B′ +
√

B′2 − C

≈ B′ ⊕
√

B′2 ⊕ 1

x2 = C ⊘ x1 = −1 ⊘ x1.

10The proof requires a certain minimum of precision, which is true of
essentially all floating point implementations.

We thus conclude that the quadratic equationx2−Bx±
1 = 0 is a particularly nice quadratic, because it can be
easily solved when its roots are real, and these roots are
representable if and only if the equation itself is repre-
sentable.

Reducing the General Case

Now that we have a robust quadratic-solver for the special
casex2 − Bx ± 1 = 0, B ≥ 0, we show how to reduce
the general quadraticAx2 +Bx+C = 0, A 6= 0, C 6= 0,
to this case, or die trying—i.e., if the general case cannot
be so reduced, then its roots cannot be represented.

But we already know how to reduce the general equa-
tion Ax2 + Bx + C = 0 into this form. We first ‘multi-
ply through’ by sgn(A) to produce|A|x2 + sgn(A)Bx +
sgn(A)C = 0. This step can always be performed with-
out any exceptions, since changing the sign of a floating
point number is a trivial operation. We assume that this
has already been done in the following.

We next compute
√

|A| and
√

|C|, which are both rep-
resentable, since|A| > 0, |C| > 0, and the absolute value
of the exponents of

√

|A|,
√

|C| are less than the absolute
value of the exponents of|A|, |C|, respectively.

We then form the product
√

|A| ⊗
√

|C|, which is
representable because both|A| and |C| are both repre-
sentable, so even in the worst case in which|A| = |C| =
M , whereM is the maximum representable value, then
the product will be

√
M

√
M = M .

The most difficult step in the reduction is the forma-
tion of |B| ⊘ (

√

|A| ⊗
√

|C|). This quantity may indeed
not be representable. Consider, for example, the equation
2−kx2 − 2 × 2kx + 2−k = 0.

|B| ⊘ (
√

|A| ⊗
√

|C|)
= 2 × 2k ⊘ (2−k/2 ⊗ 2−k/2)

= 2 × 2k ⊘ 2−k

= 2 × 22k,

which will not be representable ifk is the largest possible
exponent. However, in this case, the roots are both equal
to 22k, which is not representable, either.

So, we must allow for an exponent overflow in the for-
mation of the quantity|B| ⊘ (

√

|A| ⊗
√

|C|), and ex-
ceptions are not spurious, because they indicate that the
roots do fall outside the representable range. However, an
underflow here is benign.

35

SIGPLAN
ACM

Garbage In/Garbage Out

Thus, through the use of the substitutionx =
−y sgn(B)

√

|C|/
√

|A|, we get the equation

y2 −
(

|B|
√

|A|
√

|C|

)

y + sgn(C) = 0.

We solve this equation, as shown above, and then “back
substitute” to produce the roots of the original equation.
In order to do this, we must form the ratio

√

|C|⊘
√

|A|,
which can always be represented, since|A| and |C| are
representable. The original roots are then

x1 = −sgn(B)(
√

|C| ⊘
√

|A|) ⊗ y1

x2 = −sgn(B)(
√

|C| ⊘
√

|A|) ⊗ y2.

This rescaling ofy1, y2 to form x1, x2 may cause expo-
nent overflow and underflows, and these exceptions are
notbenign.

Let us solve the equation−2−kx2 − 2x − 2k = 0, for
k the largest representable exponent. After multiplying
through by−1, we get2−kx2 + 2x + 2k = 0, andA =
2−k, B = 2, C = 2k. We then form the equation

0 = y2 −
(

|B|
√

|A|
√

|C|

)

y + 1

= y2 −
(

2

2−k/22k/2

)

y + 1

= y2 − 2y + 1.

The solution of this equation is straightforward, and pro-
duces the rootsy1 = y2 = 1. We now backsubstitute:

x1 =

(

−sgn(B)

√

|C|
√

|A|

)

⊗ y1

=

(

− 2k/2

2−k/2

)

⊗ y1

= −2k ⊗ y1

= −2k.

If we now substitutex1 back into the original equation
(which we can’t really do without causing overflow) to
see ifx1 is really a root, we get

0 = −2−kx2 − 2x − 2k

= −2−k(−2k)2 − 2(−2k) − 2k

= −2−k22k + 2 × 2k − 2k

= −2k + 2 × 2k − 2k

= 0.

We have thus succeeded in properly solving a quadratic
that couldn’t even be put into monic form without causing
exponent overflow!

Although the use of square roots for scaling can be
considered extravagant in terms of performance,11 these
square roots are quite stable and generate no spurious
overflow/underflows. If no other means of scaling is
available—e.g., in thePostscriptlanguage [Adobe90]—
then square root scaling is an excellent way to maximize
the dynamic range of a quadratic equation solver.

Scale Factors

Although the method presented in the previous sections
works, it may not be quite as fast or accurate as one would
like, due to the multiple square root operations. In this
section, we would like to sketch an analogous scheme in
which square roots are merelyapproximatedby means of
scale factors, so as to reduce the exponent ranges to rea-
sonable values. Since scale factors which are powers of 2
preserve all the available precision (assuming that there is
no underflow or overflow), we achieve the simultaneous
goals of high efficiency, high precision and wide expo-
nent range (‘dynamic range’).

We will need the following functions:

exponent(x) = xp(x) = floor(log2 |x|) + 1

mantissa(x) = mn(x) = |x|2−exponent(x) = |x|2−xp(x)

With this definition,1/2 ≤ mn(x) < 1.

Some examples are in order:

xp(1) = floor(log2 |1|) + 1 = 0 + 1 = 1

xp(2) = floor(log2 |2|) + 1 = 1 + 1 = 2

xp(2k) = floor(log2 |2k|) + 1 = k + 1

xp(2k + 2k−1) = k + 1

mn(−3) = 0.75

We thus have forA 6= 0 the following factorization

A = sgn(A)mn(A)2xp(A).

We will also need a slightly more constrained version of
xp(x) which we will call xp2(x) and which will be an
eveninteger. Thus,

xp2(x) = xp(x), if xp(x) is even

= xp(x) − 1, if xp(x) is odd.

11Unless the architecture has a fast square root implementation—e.g.,
Digital’s Alpha.

36

SIGPLAN
ACM

Garbage In/Garbage Out

We can also define a more constrained version of mn(x):

mn2(x) = |x|2−xp2(x).

Note that we have the alternate factorization:

A = sgn(A)mn2(A)2xp2(A).

Some additional examples are in order:

xp2(1) = 0

xp2(2) = 2

xp2(3) = 2

xp2(4) = 2

xp2(7) = 2

xp2(8) = 4

So,1/2 ≤ mn2(A) < 2. xp2(x) and mn2(x) accomplish
two things—they produce anevenexponent, and make
the mantissa symmetrical about 1.

Using these concepts, we can now tackle the general
quadratic equationAx2 + Bx + C = 0, for A 6= 0,
C 6= 0. SinceA = sgn(A)mn2(A)2xp2(A), and since
1/2 ≤ mn2(A) < 2, we can divide the equation through
by sgn(A)mn2(A) without much risk of underflow or
overflow. Let us assume that this has already been done,
so our new quadratic coefficient is22k, for some integer
k.

We now have an equation that looks like22kx2 +Bx+
C = 0, for some newB and C. We can rewrite this
equation as

0 = 22kx2 + Bx + sgn(C)mn2(C)2xp2(C)

= 22kx2 + Bx + sgn(C)mn2(C)22ℓ,

for some integerℓ = xp2(C)/2.

Substitutingx = −y sgn(B)2ℓ−k:

22k
(

−y sgn(B)2ℓ−k
)2

+ B
(

−y sgn(B)2ℓ−k
)

+ sgn(C)mn2(C)22ℓ

= 22ℓy2 −
(

|B|2ℓ−k
)

y + sgn(C)mn2(C)22ℓ

Dividing through by22ℓ, we get

0 = y2 − |B|2−ℓ−ky + sgn(C)mn2(C)

= y2 − 2B′y + C′ = 0

for B′ = |B|2−ℓ−k−1 andC′ = C2−2ℓ. Furthermore,
we know thatB′ ≥ 0 and1/2 ≤ |C′| < 2.

If B′ ≥
√

2 (≥
√

|C′|), then we can computey as
follows (ignoring any exponent underflow onC ⊘ B′ ⊘
B′):

y1 = B′ +
√

B′2 − C′

≈ B′ ⊗ (1 ⊕
√

1 ⊖ C ⊘ B′ ⊘ B′)

y2 = C′ ⊘ y1

If 0 ≤ B′ <
√

2, then we have two cases:D = B′2 −
C′ < 0, in which case the roots are imaginary, andD =
B′2 − C′ ≥ 0, in which case the roots are real. In the
second case, we computey as follows:

y1 = B′ ⊕
√

D

y2 = C′ ⊘ y1

Finally, we can rescale they’s back intox’s, watching
out for overflow/underflows:

x1 = −sgn(B)2ℓ−ky1

x2 = −sgn(B)2ℓ−ky2

We have thus shown how to get essentially the same
dynamic range by careful scaling of the coefficients as
we got before by taking square roots of the coefficients.

Conclusions

If a programming language is to be used for portable,
high quality software, it is imperative that the language
provide the programmer access to thesign,12 exponent,
and mantissaof a floating point number. Furthermore,
this access must be blindingly fast—of the same order of
magnitude as an absolute value, a negation, or a multipli-
cation. If high-speed scaling is not easy to achieve in a
language, then the quality and/or cost of the software will
suffer. The quality will suffer in that many programmers
will find it too difficult to get high speed without a mass
of special cases, and the cost will suffer if this mass of
special cases must be programmed and maintained.

We also learned the lesson that numerical software is
often improved bynotusing a classical mathematical for-
mula itself, but by following instead thederivation of
this formula. This approach provides a number of ad-
vantages: it tends tocanonicalizethe problem by grad-
ually reducing the number of parameters (and thus the

12Most hardware architects have heretofore refused to provide for a
primitive sgn(x) operation, because they claim that it is easily emulated
by means of a conditional branch operation. But conditionalbranch
operations can be relatively expensive on pipelined architectures, and
the penalty for conditional branching is expected to increase. Sounds
like Catch-22 to me.

37

SIGPLAN
ACM

Garbage In/Garbage Out

number of cases to consider!), the canonicalization itself
removes common subexpressions which result in redun-
dant calculations, and—assuming that the reductions pre-
serve information/accuracy—the performance of opera-
tions likely to result in massive cancellation can be de-
ferred until the problem is simple enough to easily under-
stand the effect of this cancellation.

Although reducing the work involved in a calculation
is important, it is not nearly as important asgetting the
right answer, or even gettingan answer!13 In particu-
lar, computer arithmetic is very different from mathemat-
ical arithmetic: it has limited range and limited precision,
and therefore violates some of the algebraic properties of
mathematical numbers—most prominentlyassociativity.
The trend of programming languages to try to cover up
these issues instead of facing up to them directly is quite
distressing, and is likely to continue the trend of poor
quality software and poor software productivity.

In a future column, we will consider other ways to
solve a quadratic equation, including various iterative
methods.

References

[Ada83] Reference Manual for the Ada (R) Pro-
gramming Language. ANSI/MIL-STD-1815A-1983,
1983.

[Adobe90] Adobe Systems, Inc.Postscript Language
Reference Manual, 2nd Ed. Addison-Wesley, Read-
ing, MA, 1990. ISBN 0-201-18127-4.

[FORT77] ANSI. American National Standard Pro-
gramming Language FORTRAN. ANSI X3.9-1978,
1978.

[Casio86] Casio, Inc.Computing With The Scientific
Calculator. Casio, Inc., Japan, SA012200115B,
1986. Manual for Casio fx-115D calculator.

[Goldberg91] Goldberg, David. “What Every Computer
Scientist Should Know About Floating-Point Arith-
metic.” ACM Computing Surveys, 23, 1 (March
1991), 5-48.

[Kahan96] Kahan, W. “Lecture Notes on the Status of
IEEE Standard 754 for Binary Floating-Point Arith-
metic.” http://http.cs.berkeley.edu/˜wkahan/ieee754status/i eee754.ps

13Limited numerical precision effects were shown to cause substan-
tial problems in the operation of thePatriot anti-missile system during
the Gulf War.

[Knuth81] Knuth, D.E.Seminumerical Algorithms, 2nd
Ed.Addison-Wesley, Reading, MA, 1981.

[Menzel60] Menzel, D.H.,ed. Fundamental Formulas of
Physics, Vol. I. Dover Publs., New York, 1960, ISBN
0-486-60595-7.

[Moto87] Motorola, Inc.MC68881/MC68882 Floating-
Point Coprocessor User’s Manual. Prentice-Hall, En-
glewood Cliffs, NJ, 1987.

[Press86] Press, W.H.,et al. Numerical Recipes. Cam-
bridge Univ. Press, 1986, ISBN 0-521-30811-9. Sect.
5.5 “Quadratic and Cubic Equations.”

[Steele90] Steele, G.L., Jr.Common Lisp: The Lan-
guage, 2nd. Ed. Digital Press, 1990. ISBN 1-55558-
041-6.

[Young72] Young, D.M., and Gregory, R.T.A Survey of
Numerical Mathematics, Vol. I. Dover Publ., New
York, 1972. Sect. 3.4 “The Quadratic Equation.”

Henry Baker has been diddling bits for 35 years, with
time off for good behavior at MIT and Symbolics. In
his spare time, he collects garbage and tilts at wind-
bags. This column appeared in ACM Sigplan Notices
33,1 (Jan 1998), 30-38.

38

