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You Could Learn a Lot from a Quadratic:
|. Overloading Considered Har mful

Author: Henry G. Baker, http://home.pipeline.com/ "hbaker1/htne, hbakerl@pipeline.com

(No sacred cows were physically harmed in the making of Most of the careful work of the Ada language design-
this column.) ers on high quality numeric datatypes has gone down the
Probably the single most memorable non-trivial aldrain with these few lines of careless code. Suppose that

gebraic formula that students ever see is the famotfe REALvariables in this program are implemented as
quadratic formulafor finding the roots of the quadratic UPiquitous IEEE-754 binary floating point numbers hav-

equationdz? + Bz + C = 0: ing a 24-bit mantissa and an 8-bit exponent. How can this
program fail? IfA = 0, then we can get a divide-by-zero
. —B+VvB? -4AC exception (or an ‘infinity’). IfA = 1, B = 214 = 16384,
B 24 ' C = -1, thenB? — 4AC = 2% + 4 ~ 2*® = D, so

__9l4 _ 14 14 __
Thus, when students are given the problem of writingQRT(D) = 2" and-B+SQRT(D) = 2" +2™ =0,
ven though the true roots are approximatel'4 =

code for solving this equation in an elementary progran?— i | )
ming course, they dredge up this formula, and proceed fpl 0384 and2 ~ .000061! For another example, if

— — 980 i )
try to use it to solve for the roots of a quadratic in the sopfr = —C = 2% (about the size of Ayagadro s Number)
andB = 0, thenB? — 4AC = 2162, which cannotbe rep-

vious” way. If the teacher is exceptional, he will provide e ,
enough test cases to show that computer arithmetic is 1§S€Nted within the 8-bit exponent range even though the

at all like algebraic arithmetic, and the students will fear "00tS*1 canbe represented.

something valuable when this formula fails in mysterious Thus, if -B and SQRT(D) are of approximately the
ways. Unfortunately, most computer scientists don’t takeame magnitude, then we can get massive cancellation,
this opportunity to provide valuable insights into a wideand perhaps produce a root whichzero even when
variety of mathematical and programmingissues. Indee@, # 0, which is impossible, sinc€/A is the product

the Ada Language Reference Many#&lda83] gives a of the rootst If B is particularly large or small, then the
very poor implemention of quadratic equation solving amere computation oB?> may cause an exponent under-

anexampleo be emulated! flow or overflow, even when both roots are well within
exponent range. Aside from these problems, the program

-- From [Ada83LRM], 10.1.1, Ex. 1. is quite inefficient, since it recomput&QRT(D) and

with TEXT_IO, REAL_OPERATIONS; 2.0 = Atwice? Given the class of real-time systems that

use REAL_OPERATIONS;
procedure QUADRATIC_EQUATION is
A, B, C, D : REAL;

Ada is targeting, it is possible that the end-users may die
of more than embarrassment if this example is followed.

use REAL_IO, TEXT_IO, REAL_FUNCTIONS; Examples like this prove the utter futility of trying to
begin

GET(A); GET(B); GET(C); 1[Casio86] suggests making the same mistake, thus vastlycred

D = B*x»*2 - 4.0 *A+C: ing one’s confidence in Casio products. [Menzel60,1.1], N&D6],

if D < 0.0 then ' and [Press86] avoid cancellation, and [Young72] providesxaustive

analysis of cases of the quadratic. Although [Press86]ribkandle

PUT("Imaginary Roots."); overflow/underflow gracefully, his cookbook is at least alety

else

PUT("Real Roots : X1 = "); Q = —(1/2)[B + sgn(B)+/ B2 — 4AC)

PUT((-B - SQRT(D))/(2.0 *A)); 21 =Q/A

PUT(" X2 ="); z2 = C/Q.

PUT((-B + SQRT(D))/(2.0 *A));
end if; 2Yes, | know that many compilers can @ommon subexpression
NEW_LINE; elimination but this ability for subroutines ikS§QRTis rare, and what

end QUADRATIC_EQUATION; good is an optimization that can’t be relied upon?
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make programs look more like mathematical formulse—-Assuming thatd # 0, we can then assume “without loss
which hubris is the core premise of FORTRAN (‘FOR-of generality” that we have already performed this step,
mula TRANSslator’) and its descendant wannabees. Comvhich reduces 3 parameters to 2, for a saving839t.
puter arithmetic doesn’t follow most of the rules required his allows us to focus our attention on the simpler equa-
by algebra, so trying to make program expressions lodion:

like mathematical expressions is foolhardy and danger- 22+ Bz +C =0.

ous. Such confusion is especially dangerous to the poor

students, who don't yet have enough of a solid grasp g_}/e now consider the effect.on_the structure of the equa-
either mathematics or programming to be able to navigati@™ Of performing the substitution = —y. We get:

these subtle minefields.
vbtie minet (—y)? + B(—y) + C =y® — By +C = 0.

In other words, negating negateghe linear term while
preservingthe signs of the quadratic and constant terms.

h . high schools h b If we wanted to, we could use this symmetry to force the
For the past 35 years, American high schools have begfeicient of the linear term to be negative with the sub-
engaged in a massive Federally-funded study to detegﬁtutiona: — —sgn(B)y:

mine how little mathematics and science can be taught to

the populace before a first-world country collapses into 0= (—sgn(B)y)? + B(—sgr(B)y) + C
a third world economy. Freshmen now arrive at college 9

blissfully ignorant of much of basic algebra, including =y" —(sgn(B)B)y + C
the algebra necessary to understand and solve a quadratic =y?—|Bly+C
equation. In particular, most cannot derive the quadratic

formula, or even describe the simple symmetries of We can generalize this symmetry by consideringites-
quadratic equation. tion x = ay, wherea is a non-zero real number:

Mathematics of Quadratic Equations

The usual derivation of the quadratic formula involves (ay)? + Blay) + C = (a®)y? + (aB)y + C = 0.
“completing the square,” but since this step is completely
unmotivated, it is (quite properly) dismissed by the stuThe dilationz: = /|C[y can be used to normalize + 0

dentas a mere “trick” and quickly forgotten. A more fun-sych that the constant term has absolute value 1:
damental approach involves looking at the symmetries of

the equatioma? + Bz + C = 0 with real coefficientsA, 0= (/|Cly)* + B(v/|Cly) + C

B, C, whereA # 0. = |Cly* + (BV|C|)y + C.

The first symmetry of this equation is the observation
that the solution does not change when the equation Rviding by |C| produces:
“multiplied through” by any non-zero constant, including

1/A itself (assuming thatl # 0). Thus, we can force 0=y?+(B/\/|C|y +sgnC)
the coefficient of the quadratic term to be non-negative _ .2
o . =y“ 4+ (B/V|C|)y + 1.
by multiplying the equation by sgd):3 v+ B/VICy
) Dilations also give us another way to get rid of the coeffi-
0 = sgr(A)Az” + sgn(A) Bz + sgn(A)C cientA > 0 in the equatiomz? + Bz + C = 0: use the
= |A|z? + sgn(A) Bz + sgn(A)C substitutionz = y/v/A:

More importantly, we casimplify the equation belim-  A(y/v/A)?+ B(y/VA)+C = y*+(B/VA)y+C = 0.
inating a parameteif we divide a non-trivial quadratic

equation through by the coefficient of the squared, drinally, we can perform all three simplifications at the
“quadratic” term. This produces the “monic” equation: same time with the substitutian= —y sgn(B)./|C|/A:

2 + (B/A)z + (C/A) = 0.

2
c C
0= A<—ysgr(B) %) + B(—ysgr(B) %) +C
3We use the convention that sgh) = 1if A > 0 and sgmfé)
—1if A < 0. WhenA = 0, we require only that sqm)
[sgn(A)| = 1, so thatl /sgn(A) is non-singular andl = sgn(A)| A|. = |C|y2 - (|B| V |C|/A)y +C
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Now, dividing by|C|, we get Substituting now forz, we now get
r=y+b
0—2/2—( 5] >y+39f(0) _y_ B
VA|C| =Y-357
_ye o (1B + 1. :iiw_ﬁ
AlC] ) 2A 2A
_ —B+VB?—4AC
With this substitution, we have achieve@#&% reduction 2A '
in parameters, from 3 to 1. In other words, by studying the symmetries of the equa-

. 5 2 ; .
If C £ 0, then we can consider the substitution= tion Az*+ Bz+C = 0, we were able to find the quadratic
formula by ourselves.

1/y:
/v We now turn the problem around, and study the

A1)y + B(1/y)+C = AJy? + B/y+C = 0. gu.adranc equation that results from the two raotsand
2.

Now if C' # 0, then any roofy # 0, so we can multiply (x —x1)(x — 22) = 2 — (z1 + x2)x + 21229 = 0.

through byy? to get: , _ _
In other words, if we have aonic(A = 1) quadratic

equationz? + Bx + C = 0, then thesumof the roots is
—B, and theproductof the roots isC. In particular, if
C = 0, then (at least) one of the roots is zero, while if
B =0, thenI1 + x9 =0, i.e.,SCQ = —I.

Furthermore, ifC' # 0 and if we have already found
The final symmetry we consider is thatténslation  one rootz; = r (which must therefore be non-zero), then

yv*(A/y* + B/y+C)=Cy*+ By + A= 0.

The substitution: = 1/y reverses the quadratic end-for-
end and exchanges the roles/andC!

in which we perform the substitution= y + b: we can trivially find the second roaty = C/r = C/x;.
In particular, if|C| = 1, thenaze = £1/2, = +1/r, and
0=A(y+b)>+B(y+b)+C the equation has the following simple form:
_ 2 2
= Ay” +2Aby + Ab" + By + Bb+ C (x—r)(x+1l/r)=2>—(r+1/r)z+1=0.

= Ay® + (2Ab+ B)y + (Ab*> + Bb+ O). . _
Let us revisit the quadratic formula faf + Bz +C =

This last symmetry provides for the possibility of arrang? Once more, now that we know thatB = x, + z, and

ing for the linear coefficient of to be zero iRAb+ B = € = 2172 (21, 22 both real):
0,i.e.,b=—B/2A: L _B+VBZ—4C
B 2
0= Ay? + (24b+ B Ab* +Bb+C
v+ 24b+ Bly + (A5 + Bb+0) (@ +an) /(o T ) — A
BQ BQ =
_Ay2+<—A——A+C) 2
4 z o (561 —+ IQ) + \/(SEl —+ I2)2 — 4171172
= Ay* + <c - B—) . 2
4A (w14 @) £ V/2F + 2mya0 + 23 — day 3y
o B 2
In other wordsy? = B2/4A% — C'/A, in which case (w14 m2) £ /T — Zmmg 23
B 2
B2 C
- =2 _Z 1 + x2) £ /(21 — 72)2
yi4A2 1 :(1 2)2(1 2)
4 B2 —4AC (g 4 w2) £ |21 — 20
4A2 - 2
_ VB?-4AC _ Ttz Jo -2
- 2A - 2 2 '

32



Garbage In/Garbage Out

In other words, the first term of the quadratic formuldunctions with complex angles, or alternatively, we can
provides theaveragémean(center of magsof the two identify B/2 with cos(¢), for some real anglé:

roots, while the second term of the quadratic formula pro-

vides half the (absolute value of thaijferenceof the two 0= (y—y1)(y—y2)

rootst = (y — %) (y — e~19)

_ y2 _ (eid) + efiqb)y + eiqbefiqb
Trigonometric Solutions =y® —2cos(¢)y + 1
=y? — 2sin(n/2 — ¢)y + 1

In the previous section, we saw that the quadratic equa- 2 .
tiony? — By+1 = 0for B > 0 is a particularly interest- =y~ — 2sin(a)y +1
ing ‘universal’ quadratic, because the general quadratic =y’ - By+1.
can be reduced to this form without performing addi-

tion/subtraction, which can sometimes cause spectacule then solve for, 1, y2:®

cancellation errors. We now investigate ‘trigopnometric’ .
9 9 a = asinB/2)

solutions to this equation. ., .
_ i ji(m/2—a) __ ; —ia __ Ajef i — cigl — H .
We first take up the case wheee = +1,ie.,y2 — 1~ ° —° e - cis(—a)i = cis(—asin(B/2))i
By+1=0,for B> 0. There are two subcaseB: > 2, y»=e ' = ¢ (7279 = _je'® = _cis(a)i = —cis(asinB/2))i.
and0 < B < 2. Consider the quadratic formed by the

two (positive) rootgy; = e?, yo = e~ ?: (cis(¢) = cos(¢) + isin(¢) = €'
The other major case involvés= —1, i.e.,y? — By —
0=(w—y1)y—v2) 1 = 0, for B > 0. Consider the rootg; = e, y, =
=(y-y-e) e
0 —0 0= (y—y1)(y—v2)

=y’ — (" +e )y +ele
=y* —2cosh(f)y + 1
=y’ - By+1.

=(-e)y+e)

_ y2 _ (60 _ e—G)y _ 696—9
=y? — 2sinh(f)y — 1

This last equation is well-defined iB > 2, since =y>— By—1.

cosh(6) > 1, for all real 9, so we can solve fof to pro-

duce the roots: , y»: Thus, we can now solve fa, y1, yo:

6 = acosliB/2) 0= asmk(B/g)

y = e = 2costiB/2) yr = e = 3SINB/2)

( _ -6 _ _—asinhB/2)
Yo = et — efacos}QB/Q)' Yo = —€e = —e .

For completeness, we express a repbf the original
quadraticAz? + Bz + C = 0 trigonometrically:

_ [=C _asinh/—B2_
nEVTae '

When0 < B < 2 in the equation/? — By + 1 = 0,
then we have Zomplexroots because3? — 4AC =
B?—4 < 0. We can then utilize hyperbolic trigonometric

4A classic ‘hack’ for the max and min functions involves therid

tities max(z1, x2) + min(z1,z2) = =1 + x2 andmax(z1,x2) — -~ . - . .
min(z1, z2) = |z1 — 22|, which yield the formulee: Suitably interpreted,” this formula is equivalent to the

classical quadratic formula! (Hint: use the mathematical

max(z1, v2) = - ;m |1 5 el definition: asinliz) = log (= + v/1 + 22) and the prop-
§ erty asinli—z) = —asinkz).)
an
min(z1, 22) = 2L +x2 |z — 2 An important reason for expressing the solutions of the
’ 2 2 guadratic equation in this trigonometric form is that all
We have thus shown that these formulee havesimecancellation
problems as the quadratic formula, and are thtes@ble way to com- SWe utilize the function asifiB/2) rather than acqs3/2) because
pute max and min! the inverse sin function is better behaved nBge = 0.
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of the operations leading up to this form are numericall}he program). This situation is called numericaider-
stable$ thus ‘passing the buck’ to the trigonomefrand flow. There also exist numbess# 0 such that comput-
exponential functions to properly handle the numericahg = ® 2 causes either the program to crash with a nu-
subtleties, instead of trying to handle them one’s self! mericaloverflow or to produce a ‘number’ that prints as
NaN(‘Not-a-Number’) or ‘infinity’. However, forbinary
floating point implementations, division and multiplica-
Floating Point Arithmetic tion by powers of 2 lose no accuracy in the absence of
overflow/underflow’, so we can writer ® 2% andz @ 2*
Computers have (at least) 2 kinds of arithmetic oper@s«2" andz /2" = 22, respectively.
tions: “integer” (*fixed point”) operations and “floating  Although floating point multiplication and division
point” operations. Fixed point addition and multiplica-are not associative, even in the absence of over-
tion are commutative and associative over a limited rangRw/underflow, they are relatively stable operations in
in traditional algebraic fashion, whereas floating point adhe sense that the floating point result is not too far from
dition and multiplication are usually commutative, but althe mathematical value (which is not itself usually repre-
most never associative. sentable). Square root is even more stable, as it cannot

Most algebraic systems encountered by students fepduce overflow/underflow, and fails only for negative

commutative and associative, withatricesproviding the ~arguments.

first encounters with non-commutative algebra. Other Probably the most common (and most severe) problem
than floating point arithmetic, the only non-associativevith floating point arithmetic occurs when very precise
algebra normally encountered is that of vector “crossiumbers of the opposite sign and nearly the same value
products,” which are neither commutative nor associare algebraically summed. In this case, the resulting value
tive. Unfortunately, computer science classes rarely useay be very far from the correct numerical value, and
the student’s encounters with floating point arithmetic tonay be almost totally garbage. Thus, while> x = 0,
point out its non-associativity and other “weird” features(y @ z) © « may be very far fromy, and may even be

In floating point arithmetic, there exist numbers: 0, identically zero, ify first drowns inz.

such thatr @ y = 2.8 i.e., y ‘drowns’ in z (why do Let us consider the two roots, > 0, x5 > 0 of the
you think they call it ‘floating point'?). For example, on quadratic equation® — (1 + x2)z +z122 = 2° 4+ Bx +
many computerg0® @ 1 = 10%. As a result, one can C = 0. If 2o is many orders of magnitude smaller than
write loops which continually increment with y, but 71, thenB = —(z; & x3) = —1, when evaluated in
will never reachz > z! The student usually gets this floating point. Thus, if we look at the operation of the
rude awakening the first time he tries to perform approx@uadratic formula when computed using floating point:
imate integration by adding up the little rectangles as his

T1Dx2 T1OT2  T1 X1

calculus class suggests Z2 5 © 5 5 S] 9 ;

In many implementations, there exist numbers: 0
such thatr @ 2 = 0. In other words; is so small that
dividing it by 2 can make it identically zero (or crash Thus, when implemented with floating point arith-
metic, the naive quadratic formula may get one of the

*When B ~ 2, we compute eithecosh(¢) ~ 1 orcos(¢) ~ 1,  roots correct, but completely flub the other one. The
which implies that ~ 0 or ¢ ~ 0, respectively. The loss of accuracy p3ive formula may still produce very poor results even
nearB/2 = 1is unavoidable due to the approximation of a double root. h both of th d d f he fl .

7If you want to try these trigonometric solutions, you mayaheeW en both of the answers produced from the floating

to implement the inverse hyperbolic functions adash asinz)  Ppoint arithmetic are non-zero.
yourself—either because they weren't included in your legg, or be-
cause they are broken (inverse hyperbolic functions amdyraested).

even wherC = zy25 # 0!

In such cases, the mathematical definitions are [Steele90]: Exponent Range Analysis
asinf(z) = log (z TVIF 22) Consider again the quadratic equation (with real roots)

2?2 — Bxr+1 = 0, whereB > 0. We note that since

acostiz) = 2 1o (V/EF172 + V- 172). 1] = 1/[wal, if |21] = 2%, then|zs| = 2, s0 the two

8We follow [Knuth81] in using®, ©, ®, © for the floating point 9Except for ‘denormalized’ numbers, which should have bedied
operations oft, —, x, /. ‘subnormal’ numbers.
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roots have exponents that asgmmetrically distributed  We thus conclude that the quadratic equatién Bx+
about2® = 1. Since floating point exponent range limits1 = 0 is a particularly nice quadratic, because it can be
are usually more-or-less symmetric abdUt= 1, we can easily solved when its roots are real, and these roots are
usually be assured (for this equation) thatifis within  representable if and only if the equation itself is repre-
exponent range, then so wilb. sentable.

Now B = x1 +z2 > 0, so the root of larger magnitude
must be non-negative (regardless of the signf Call .
this larger root:; = r > 0. If the magnitude o3 is very Reducing the General Case
large, sayB = 2F, for k > 1, thenB will equalz; = r,
becausérs| = 1/r will drown in z;. So, in this case, we Now that we have a robust quadratic-solver for the special
get the equation caser’ — Br 4+ 1 = 0, B > 0, we show how to reduce
the general quadrati¢z? + Bz +C = 0, A # 0, C # 0,
7= (21 @)z + (11 @@2) = 2% — (;)w £ 1=0. g thgis case,qor die trying—i.e., if the genefal cas?eé cannot
In short, if the coefficienB > 0 in the quadratic? —  be so reduced, then its roots cannot be represented.

Ba +1 = 0 with real rootsz,, z; is in exponentrange, gt e already know how to reduce the general equa-
thenz; andz, must both also be in exponent range. tion Az2 + Bz + C = 0 into this form. We first ‘multi-

So the quadratic equatiarf — Bz + C = 0, B > 0,  ply through’ by sgiA) to produce A| + sgn(A) Bz +
C = +1, is particularly nice, because its real solutionggn A)C' = 0. This step can always be performed with-
are always representable. We now solve this equation.dfit any exceptions, since changing the sign of a floating
B > 2,thenB?—4C > 22 —4C = 4(1—-C) > 0,sothe point number is a trivial operation. We assume that this
roots are always real. The larger magnitude root (whichas already been done in the following.

must be positive) can be computed as We next compute/| A| and/|C|, which are both rep-
B'=B22 (soB' >1) resentable, sindel| > 0, |C| > 0, and the absolute value
o= B 4+ VB2 C of the exponents of/]A[, /|C| are less than the absolute

! value of the exponents ¢fl|, |C|, respectively.

~ R/ / 2

~B @ (1 eV1e(CoB )) We then form the product/|A| ® +/|C|, which is

z9=C QO x1. representable because both and |C| are both repre-
sentable, so even in the worst case in wHi¢h= |C| =

The only possible problem occurs in the step where Wﬁ/[, whereM is the maximum representable value, then
computeC @ B2. If B is very large, sayB’ = 2

the product will bey M v M = M.
for k > 1, then|C @ B"?| = 272F, which can produce P /M

exponent underflow. However, in this case, the under- The most difficult step in the reduction is the forma-
flow isn’t serious, because when it happens, we merelipn of | B| @ (v/[A] @ /|C]). This quantity may indeed
produce an extremely small (in absolute value) numbéot be representable. Consider, for example, the equation
which drowns when added to 1. This underflow should "z* — 2 x 2¥z +27% = 0.

therefore be ignored, because we will already be getting

the best answer possible. Bl o (VIAl @ V/C1)
If 0 < B < 2, on the other hand, then we have two =2x 2k (27F2 @2 k/2)
casesC = landC = —1. If C =1, thenB? — 4AC < — 2% ok ok
22 — 4 = 0, so both roots are complex. f = —1, then ok
B? —4AC = B? + 4 > 0, so both roots are real. The =2x27,

larger magnitude root is also positive, so . ) _ .
g g P which will not be representableffis the largest possible

B'=Bo2 (0<B <1) exponent. However, in this case, the roots are both equal
2% which i :
w1 =B +B?2-C to 2%, which is not representable, either.

~B aoVBZol So, we must allow for an exponent overflow in the for-

mation of the quantityB| @ (1/|4] ® y/|C|), and ex-

g =C0x =-10m. ceptions are not spurious, because they indicate that the
10The proof requires a certain minimum of precision, whichugtof ~ '00ts do fall 0Ut§|de th.e representable range. However, an
essentially all floating point implementations. underflow here is benign.
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Thus, through the use of the substitution = We have thus succeeded in properly solving a quadratic
—ysgnB)+/|C|/+/|A|, we get the equation that couldn’t even be putinto monic form without causing
exponent overflow!

2 — < B ) y +sgn(C) = 0. Although the use of square roots for scaling can be

' VIAVIC] considered extravagant in terms of performatcthese
square roots are quite stable and generate no spurious

We solve this equation, as shown above, and then “bagerflow/underflows. If no other means of scaling is

substitute” to produce the roots of the original equat'orhvallable—e g., in th@ostscriptianguage [Adobe90]—

In order to do this, we must form the ratig|C| @ then square root scaling is an excellent way to maximize

which can always be represented, sifdeand |C| are the dynamic range of a quadratic equation solver.
representable. The original roots are then

r1 = —sgnB)(v/|C| @ V|A]) @ 1 Scale Factors

= —sgnB)(vIC| @ VIA]) @ y2. Although the method presented in the previous sections
This rescaling ofjs, y» to form a1, » may cause expo- works, it may not be quite as fast or accurate as one would
nent overflow and underflows, and these exceptions af&e: due to the multiple square root operations. In this
notbenign. section, we would like to sketch an analogous scheme in
which square roots are merapproximatedy means of
scale factors, so as to reduce the exponent ranges to rea-
Yonable values. Since scale factors which are powers of 2
preserve all the available precision (assuming that ttsere i
no underflow or overflow), we achieve the simultaneous

Let us solve the equation2—*22 — 22 — 2% = 0, for
k the largest representable exponent. After multiplyin
through by—1, we get2=*22 + 2z + 2% = 0, andA =
27% B =2, C = 2*. We then form the equation

B goals of high efficiency, high precision and wide expo-
0=1y>— (#) y+1 nent range (‘dynamic range’).
VIAlvICl We will need the following functions:
2
=y’ - <W> y+1 exponentz) = xp(x) = floor(log, |z|) + 1
— 22yl mantisséz) = mn(xz) = |z|27SPONeNt) — |59 XP@)

The solution of this equation is straightforward, and pro¥Vith this definition,1/2 < mn(z) < 1.
duces the rootg; = y» = 1. We now backsubstitute: Some examples are in order:

xp(1
xr1 = <—Sgl‘(B)\/\/g> QY1 (2

floor(log, [1[) +1=0+1=1
floor(log, 2[) +1=14+1=2
f

)
)
)
)

ok/2 xp(2¥) = floor(log, [2%]) + 1 =k + 1
_(_2——k/2)®y1 xp(2F + 281 = k41
=22y mn(—3) = 0.75
= -2k, We thus have for # 0 the following factorization
If we now substituter; back into the original equation A = sgnA)mn(A4)2PA),
(which we can't really do without causing overflow) to
see ifz; is really a root, we get We will also need a slightly more constrained version of
xp(z) which we will call xp2z) and which will be an
0=—2"Fz2 -2z —2F eveninteger. Thus,
—k k\2 k k
=-27"(=2%)" —2(-2") -2 xp2(z) = xp(x), if xp(z) is even
=—27%2% 2 x 2k —2F = xp(z) — 1, ifxp(z) is odd.
=—2F 2 x 2ok ok

11Unless the architecture has a fast square root implementag.g.,
=0. Digital's Alpha
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We can also define a more constrained version ofajin
mn2(z) = |z|2 7P,
Note that we have the alternate factorization:
A = sgnA)mn2(A)2XP2A)
Some additional examples are in order:
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2
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(
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S0,1/2 <mn2(A) < 2. xp2(z) and mnZz) accomplish
two things—they produce aevenexponent, and make
the mantissa symmetrical about 1.

If B > v2 (> /]C’]), then we can computg as
follows (ignoring any exponent underflow @@ B’ ©
B'):

y1 =B ++/B? -
~B®(leviceCoB oB)
yo=C' Oy

If 0 < B’ < /2, then we have two case®) = B> —
C’ < 0, in which case the roots are imaginary, aid=
B? — ¢’ > 0, in which case the roots are real. In the
second case, we computeas follows:
y1 =B &VD
y2=C" oy

Finally, we can rescale thgs back intoz’s, watching
out for overflow/underflows:

T = —Sgr(B)2E’ky1
To = —Sgr(B)2é_ky2

Using these concepts, we can now tackle the general

quadratic equatiomz? + Bz + C = 0, for A # 0,

C # 0. SinceA = sgnA)mn2(A4)2XP%4)  and since
1/2 < mn2A) < 2, we can divide the equation through
by sgriA)mn2(A) without much risk of underflow or

We have thus shown how to get essentially the same
dynamic range by careful scaling of the coefficients as
we got before by taking square roots of the coefficients.

overflow. Let us assume that this has already been doegnclusions

so our new quadratic coefficient28*, for some integer
k.

We now have an equation that looks k& 2% + Bx +
C = 0, for some newB andC. We can rewrite this
equation as

0 = 2222 + Bz + sgn(C)mn2(C)2XP2(C)
= 2%%2% + Bx 4 sgn(C)mn2(C)2%,

for some integef = xp2(C') /2.
Substitutingr = —y sgn(B)2¢~*:
2%k (—y sgr(B)2Z*’“)2 + B(—ysgnB)2~ ")
+ sgn(C)mn2C)2%
=222 — (|B|2°7%) y + sgr(C)mn2 ) 2%
Dividing through by2%¢, we get

0 =y* — |B]27*Fy + sgnC)mn2C)
=y’ —2B'y+C' =0

for B’ = |B]2~“*~! andC’ = C272‘. Furthermore,
we know thatB’ > 0 and1/2 < |C'| < 2.

37

If a programming language is to be used for portable,
high quality software, it is imperative that the language
provide the programmer access to gign'? exponent
and mantissaof a floating point number. Furthermore,
this access must be blindingly fast—of the same order of
magnitude as an absolute value, a negation, or a multipli-
cation. If high-speed scaling is not easy to achieve in a
language, then the quality and/or cost of the software will
suffer. The quality will suffer in that many programmers
will find it too difficult to get high speed without a mass
of special cases, and the cost will suffer if this mass of
special cases must be programmed and maintained.

We also learned the lesson that numerical software is
often improved byotusing a classical mathematical for-
mula itself, but by following instead thderivation of
this formula. This approach provides a humber of ad-
vantages: it tends toanonicalizethe problem by grad-
ually reducing the number of parameters (and thus the

12\Most hardware architects have heretofore refused to pedidda
primitive sgr(z) operation, because they claim that it is easily emulated
by means of a conditional branch operation. But conditidsrainch
operations can be relatively expensive on pipelined achites, and
the penalty for conditional branching is expected to inseeaSounds
like Catch-22 to me.
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number of cases to consider!), the canonicalization itsglknuth81] Knuth, D.E.Seminumerical Algorithms, 2nd
removes common subexpressions which result in redun- Ed.Addison-Wesley, Reading, MA, 1981.

dant calculations, and—assuming that the reductions pre-

serve information/accuracy—the performance of operdV€nzel60] Menzel, D.H.ed Fundamental Formulas of
tions likely to result in massive cancellation can be de- PNysics, Vol. IDover Publs., New York, 1960, ISBN

ferred until the problem is simple enough to easily under- 0-486-60595-7.

stand the effect of this cancellation. [Moto87] Motorola, Inc.MC68881/MC68882 Floating-
Although reducing the work involved in a calculation  Point Coprocessor User’s Manudtrentice-Hall, En-
is important, it is not nearly as important gstting the glewood Cliffs, NJ, 1987.

right answer or even gettingan answert® In particu- ) )

lar, computer arithmetic is very different from mathematlPress86] Press, W.Het al. Numerical RecipesCam-
ical arithmetic: it has limited range and limited precision ~ Pridge Univ. Press, 1986, ISBN 0-521-30811-9. Sect.
and therefore violates some of the algebraic properties of °-> “Quadratic and Cubic Equations.”

mathematical numbers—most prominerdigsociativity [Steele90] Steele, G.L., JCommon Lisp: The Lan-

The trend of programming languages to try to cover up guage, 2nd. EdDigital Press, 1990. ISBN 1-55558-
these issues instead of facing up to them directly is quite 5416

distressing, and is likely to continue the trend of poor
quality software and poor software productivity. [Young72] Young, D.M., and Gregory, R.A Survey of
Numerical Mathematics, Vol.. IDover Publ., New

In a future column, we will consider other ways to ) ;
York, 1972. Sect. 3.4 “The Quadratic Equation.”

solve a quadratic equation, including various iterative
methods.
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